
Chapter 8

[197]

Let us understand under normalization first. Assume that we are developing a
simple Library Management System. We identify Book as the first entity, and start
listing its different fields:

Book ID

Title

ISBN

AuthorName

PublisherName

Now assume that we have created a Book table in the database with these fields, and
entered a list of books:

BookID Title ISBN AuthorName AuthorAddress PublisherName
1 Advanced C#

3.5
555-66 James Hetfield 33, 4th Street, CA MTL Pvt Ltd

2 ASP.NET 3.5 4343-443 Kirk Hammet 56, Dersy Drive,
NC

MTL Pvt Ltd

3 AJAX
Simplified

334-
34341

James Hetfield 33, 4th Street, CA MTL Pvt Ltd

4 ADO.NET
Internals

323-234 James Hetfield 33, 4th Street, CA NPS Pvt Ltd

Now, there are some problems with this design, as listed below:

If we want to have 100 rows of books written by the author James Hetfield,
we will need to repeat AuthorName and AuthorAddress 100 times (once for
each row), wasting valuable disk space and creating redundant data.
If we want to retrieve a list of authors from the table above using an SQL
query, we will need to make sure that we filter our repeated names.
If we delete a book, the author would be deleted too, along with the
publisher. Authors and Publishers are not dependent on the Books, so having
the above design is a major drawback.
If we need to update a publisher or an author, we have to update each row
for every book published by that publisher or written by that author, which
not only degrades performance but is also a cumbersome task.

•

•

•

•

•

•

•

•

•

Database Design

[198]

To fix these issues, we need to normalize the data model and put the author and
publisher details in separate individual tables. So instead of one Book table, we will
have three tables:

Book
Author
Publisher

This way, we will remove the dependency of Books on Authors and Publishers.

Book Author Publisher

- BookID
- Title
- ISBN
- AuthorID
- PublisherID

- AuthorID
- FirstName
- LastName

- PublisherID
- Name
- Company

So now we have three normalized tables, and instead of repeating the authors in the
Books table, we are now referencing authors from the Author table using AuthorID
as a foreign key in the Book table.

When we normalize a table, we basically break it up into different tables. This
means increased complexity when querying data as we now need to use multiple
tables instead of a single table. We need to have a balance between normalization
and performance of the queries (joins). For example, we know that many customers
could have a common last name, but we cannot create another table for LastName.
So sometimes we may want to 'denormalize' data for better performance.

Moreover, we don't need to normalize when archiving data. So data stored in
archived tables (historical data) should be denormalized so that queries can run
faster and be performance-efficient.

Data Modeling using MS Visio
Let us create a physical data model for our Order Management System from the
logical data model we developed in this chapter. Although we will create a physical
data model targeting Microsoft SQL Server 2005, you can use the same method to
target any database you want.

•

•

•

